
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

1

Achieving Efficient and Privacy-Preserving
(α,β)-Core Query over Bipartite Graphs in Cloud
Yunguo Guan, Rongxing Lu, Fellow, IEEE, Yandong Zheng, Songnian Zhang, Jun Shao, Member, IEEE,

and Guiyi Wei

Abstract—Bipartite graphs have been widely adopted in applications such as e-healthcare and recommendation systems thanks to
their ability to model various real-world relationships. Meanwhile, (α, β)-core query services over bipartite graphs are generally
recognized as a promising approach for finding communities, i.e., closely related sets of vertices, in a bipartite graph. As the bipartite
graph grows, the service providers tend to outsource the services to the cloud for flexible and highly reliable computational resources.
However, since the cloud is not fully trustable, there are privacy concerns related to the dataset, query requests, and results. Although
many schemes have been proposed for privacy-preserving queries over graphs, they cannot be directly adopted to handle accurate
(α, β)-core queries over bipartite graphs. Aiming at the challenges, under the two-server setting, this paper constructs two
privacy-preserving schemes with different levels of security to handle (α, β)-core queries over the bipartite graph. Specifically, in the
proposed schemes, a graph is represented as an index containing an edge table and a node table and further encrypted by a
symmetric homomorphic encryption scheme, and then the two servers securely traverse the index. Detailed security analysis shows
that both schemes can achieve access pattern privacy, while the security-enhanced one can further protect the structure privacy of the
query requests and results. In addition, extensive performance evaluations are conducted, and the results also indicate our proposed
schemes are computationally efficient.

Index Terms—Community detection, (α, β)-core query, bipartite graph, privacy-preserving

F

1 INTRODUCTION

B IPARTITE graphs have been widely adopted in various
applications, as they can model real-world relationships

among different types of entities, e.g., author-paper [1],
patient-disease [2], customer-product [3]. Meanwhile, many
techniques have been proposed for mining insights from
bipartite graphs, and among them, (α, β)-core query is a
promising one that can achieve fault-tolerant group recom-
mendation [4] and community discovery [5]. For instance,
given a bipartite graph representing the relationships be-
tween patients and medical services, a doctor can query
with several vertices (including patients and/or medical
services) to obtain a maximal connected subgraph of the
bipartite satisfying that, i) each patient in the subgraph
links to at least α medical services in the subgraph; ii) each
medical service in the subgraph links to at least β patients
in the subgraph; and iii) the query vertices are included
in the subgraph. The vertices in the obtained subgraph
form a community that are closely related to the query
vertices and may provide some useful information (e.g.,
advice on medical services) to the doctor [6]. Furthermore,
as the bipartite graph grows, the service provider tends to
outsource the query services to a powerful cloud, similar to
other outsourced services in the cloud [7]–[9].

• Y. Guan, R. Lu, Y. Zheng, and S. Zhang are with the Faculty of Computer
Science, University of New Brunswick, Fredericton, Canada E3B5A3. E-
mail: yguan4@unb.ca, rlu1@unb.ca, yzheng8@unb.ca, szhang17@unb.ca.

• J. Shao and G. Wei are with Zhejiang Gongshang University, Hangzhou,
China 310018. E-mail: chn.junshao@gmail.com, weigy@zjgsu.edu.cn.

However, directly outsourcing the services to the not-
fully-trustable cloud raises privacy concerns for both the
service provider and query users. On the one hand, the
dataset should only be available to authorized query users,
as it is a private asset of the service provider. On the
other hand, the query requests and results should also be
protected against other participants in the system, since they
may reveal some private information related to the query
users. Therefore, the original bipartite graph and query
requests must be encrypted before being outsourced to the
cloud. Nevertheless, it is commonly acknowledged that en-
cryption techniques will hinder the usability of the dataset.
As detailed in Section 7, many schemes [10]–[26] have been
proposed to conduct queries over graph data while preserv-
ing data privacy. However, some of them [10]–[17] preserve
data privacy of the original graph through k-anonymity, but
they can neither be adapted to handle accurate (α, β)-core
query, nor preserve the privacy of query requests. Some oth-
ers [18]–[28] are built upon homomorphic encryption and
some customized secure computing protocols. They cannot
be trivially adapted to our (α, β)-core query scenario over
bipartite graphs. Therefore, it is still challenging to design
an efficient and privacy-preserving scheme that supports
(α, β)-core queries over bipartite graphs.

In this paper, aiming at the above challenges, we pro-
pose our efficient and privacy-preserving (α, β)-core query
scheme over bipartite graphs in cloud. Specifically, the con-
tributions of our paper are three-fold.
• First, we build an index containing two tables obtained

from the bipartite graph to support (α, β)-core queries,
where each row in the two tables respectively represents a
vertex and an edge in the original graph. Then, we propose

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

2

our basic (α, β)-core query scheme with two non-collusive
cloud servers. In the basic scheme, the index and query
requests are encrypted by a symmetric homomorphic en-
cryption (SHE) scheme [29], thus the privacy of the original
bipartite graph and the query requests are preserved.
• Second, to further protect the privacy of query results’

structures, we revise the two tables in the index and build
an encrypted queue based on the SHE scheme. Then, we
construct our security-enhanced version, where the cloud
servers cannot obtain any useful information related to the
bipartite graph, query requests, and query results.
• Finally, we analyze the security of the two pro-

posed schemes and compare their performance on two real
datasets. The security analysis shows that the basic scheme
can well preserve the privacy of the bipartite graph and
query requests, and the security-enhanced one can further
preserve the privacy of query results’ structures. The exper-
imental result also shows that our proposed schemes are
indeed efficient.

The remainder of this paper is organized as follows. In
Section 2, we recall the definition of (α, β)-cores and an SHE
scheme as our preliminaries. Then, we formalize the system
model and security model, and identify our design goal in
Section 3. In Section 4, we present our basic scheme and
analyze its security. After that, we propose a scheme with
enhanced security in Section 5 followed by its security anal-
ysis. In Section 6, we demonstrate the performance of the
two proposed schemes. We also review some related works
in Section 7. Finally, we conclude this work in Section 8.

2 PRELIMINARIES

2.1 Bipartite Graph and (α, β)-Core
A bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets U and V such that
each edge connects one vertex in U and the other in V . By
denoting a bipartite graph as a triple G = (U ,V, E), we have
the edge set E ⊆ (U × V).

An (α, β)-core of G, denoted by G′ = (U ′,V ′, E ′), is a
subgraph of G satisfying that i) it is a connected subgraph;
ii) the degree of each vertex in U ′ is not smaller than α,
i.e., deg(ui) ≥ α, for each ui ∈ U ′; iii) the degree of each
vertex in V ′ is not smaller than β, i.e., deg(vj) ≥ β, for each
vj ∈ V ′; and iv) it is maximal, i.e., the resulting subgraph
obtained by adding one or more edges from E \ E ′ and the
corresponding vertices to G′ will not satisfy the previous
three conditions. An example of a bipartite and its (α, β)-
core is shown in Fig. 1, where α = 2 and β = 3.

U

G

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

(2,3)-core
V

U′

V′

Fig. 1. An example of a bipartite and its (α, β)-core, where α = 2
and β = 3. As shown in the figure, all ui ∈ U ′ = {u3, u4, u5}
satisfy deg(ui) = 2 ≥ α, and each vj ∈ V ′ = {v4, v5} satisfy
deg(vj) = 3 ≥ β.

Then, we formally define (α, β)-core queries as follows.

Definition 1 ((α, β)-Core Queries). Given a bipartite graph
G = (U ,V, E), an (α, β)-core query, denoted by a 3-tuple
req = {R ⊆ (U ∪ V), α, β}, is to obtain a maximal subgraph
Greq = (Ureq,Vreq, Ereq) ⊆ G satisfying that i) it consists
of one or multiple disjoint (α, β)-cores; and ii) each connected
component in Greq contains at least one vertex in R.

2.2 SHE Scheme

In this subsection, we recall a symmetric homomorphic
encryption (SHE) scheme [29], which is IND-CPA secure
[8], and will be used in our proposed scheme. It comprises
three algorithms, namely, Key Generation, Encryption, and
Decryption.
• Key Generation: Given security parameters k0, k1, k2

satisfying k1 � k2 < k0/2, the key generation algorithm
randomly selects an integer L and two prime numbers p
and q such that |L| = k2 and |p| = |q| = k0. Then, it outputs
the public parameter PP = (k0, k1, k2,N = pq) and a secret
key SK = (p,L). Furthermore, the basic plaintext space is
defined asM = [−2k1−1, 2k1−1).
• Encryption: Given PP and SK , the algorithm first

randomly selects two random numbers r ∈ {0, 1}k2 and
r′ ∈ {0, 1}k0 . Then, a message m ∈ M can be encrypted as
c = E(m) = (m+ rL)(1 + r′p) mod N .
• Decryption: With PP and SK , a ciphertext c can be

decrypted in two steps. First, the algorithm computes m̃ =
(c mod p) mod L. Then, it outputs m = m̃ if m̃ < L/2;
otherwise, it outputs m = m̃ − L. As k1 � k2 < k0/2,
we have m + rL < p and |m| < L/2, and thereby, the
correctness of the decryption holds.

Homomorphic Properties. The SHE scheme enjoys the
following homomorphic addition (Homo-Add) and homo-
morphic multiplication (Homo-Mul) properties. Specifically,
given two ciphertexts c1 = E(m1) and c2 = E(m2), we
have i) Homo-Add-I: (c1 + c2) mod N → E(m1 + m2); ii)
Homo-Mul-I: (c1 × c2) mod N → E(m1 × m2); iii) Homo-
Add-II: (c1 + m2) mod N → E(m1 + m2); and iv) Homo-
Mul-II: (c1 ×m2) mod N → E(m1 ×m2), when m2 > 0.

Note that, the SHE scheme is a leveled homomorphic
encryption. Given security parameters k0 and k2, its multi-
plicative depth δ = k0

2k2
− 1.

3 MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

3.1 System Model

In this paper, we consider a privacy-preserving (α, β)-
core query scenario, which contains three types of entities,
namely, a data owner DO, a cloud containing two cloud
servers CS = {CS1,CS2}, and a set of query users, as shown
in Fig. 2.
• Data Owner: In our system model, the data owner

DO has a bipartite graph G = {U ,V, E}. Note that, since
we aim to design a privacy-preserving (α, β)-core query
scheme, we assume that the vertices in U and V are labeled
by continuous integers. To make better use of the graph,

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

3

Data Owner

Cloud

𝖢𝖲1 𝖢𝖲2

Query Users

Grap
h

an
d S

ec
ret

 K
ey

s𝒢

Query Request

Results

Authorized Key

1

2

3

4

A

B

C

D

E 1

3

4

B

C

E

Fig. 2. The system model under consideration.

he/she wants to offer (α, β)-core query services to query
users, which may exceed the computation capacity of DO.
Therefore, DO is willing to outsource the dataset and the
services to the cloud CS . Furthermore, to preserve the
privacy of the dataset, DO will encrypt the dataset before
outsourcing it to the cloud.
• Cloud: The cloud servers CS1 and CS2 in our system

model are equipped with powerful computation resource
and plentiful storage space, and they are employed to pro-
vide the (α, β)-core query services. That is, upon receiving
a query request from a query user, they jointly conduct the
query on the outsourced dataset G and return the query
result to the query user.
• Query Users: In our system model, after being autho-

rized by the data owner DO, a query user can launch (α, β)-
core queries to the cloud. That is, it can launch a (α, β)-core
query request req = {R, α, β} to the cloud CS to obtain all
(α, β)-cores related to the vertex set R. Similar to DO, the
query user needs to encrypt req before submitting it to CS .

3.2 Security Model
In our security model, we consider the data owner is trusted,
as he/she owns the dataset and has no motivation to deviate
from the services. For the query users, they are considered
to be honest, i.e., they will faithfully encrypt their query
requests. Furthermore, the two cloud servers CS1 and CS2

are considered to be honest-but-curious. That is, they will
faithfully conduct user queries but might be curious about
the structure (including connectivity between vertices and
the degrees of vertices) or the plaintext of not only the
dataset, query requests and the corresponding results but
also the access pattern during executing query. However,
they will not collude with each other. This no-collusion
assumption is reasonable as the collusion of the two cloud
servers may damage the reputation of the corresponding
cloud service providers, and it has already been adopted in
many research works in the security community [30]–[33].

Note that, adversaries may also launch other active
attacks, e.g., Denial-of-Service (DoS) attack. As this paper
focuses on privacy preservation in (α, β)-core queries, those
attacks are out of the scope and will be discussed in our
future work.

3.3 Design Goal
The design goal of this paper is to propose an efficient and
privacy-preserving (α, β)-core query scheme which should
have the following two properties.

• The proposed scheme should be privacy-preserving. As the
outsourced dataset, the query requests and the correspond-
ing results are private to the data owner and the query users,
the proposed scheme should be privacy-preserving. Specifi-
cally, the cloud servers should not be able to obtain not only
the plaintext and structure of the outsourced dataset, query
requests, and query results but also access patterns during
executing queries.
• The proposed scheme should be efficient. To preserve data

privacy, the proposed scheme will employ some crypto-
graphic techniques that might be computationally expen-
sive. However, to make the proposed scheme practical, its
efficiency should also be taken into consideration.

4 OUR PROPOSED BASIC SCHEME

In this section, we present our basic efficient and privacy-
preserving (α, β)-core query scheme. We first give a general
idea of the proposed scheme. Then, we describe our basic
scheme followed by its security analysis.

4.1 Main Idea of Our Basic Scheme
As shown in Fig. 3, given a bipartite graph G, we can
easily observe that vertices in G will be pruned as α and
β increase. That is, if a vertex n ∈ (U ∪ V) is not included
in an (α, β)-core of G, it will not be included in any (α′, β′)-
core, where α′ ≥ α, β′ ≥ β, and α′ + β′ > α + β. Based
on this observation, we can compute a table T = {β̂n,α |
n ∈ (U ∪ V), 1 ≤ α ≤ maxu∈U deg(u)} representing the
maximum β such that the vertex n ∈ (U ∪ V) is included in
an (α, β)-core. For example, β̂u2,3 = 1 means that the vertex
u2 is an element of a (3, 1)-core but is not an element of a
(3, 2)-core, as shown in Fig. 3. In addition, if two connected
vertices n and n′ satisfy β̂n,α ≥ β and β̂n′,α ≥ β, then
they are in the same (α, β)-core, otherwise these (α, β)-cores
are not maximal and can be merged. Therefore, based on
T , we can efficiently compute an (α, β)-core for a specific
query set R ⊆ (U ∪ V) by obtaining the maximal connected
subgraph for each vertex in R where each vertex n in the
subgraph satisfies β̂n,α ≥ β, as shown in Alg. 1. To improve
the efficiency, for each vertex n ∈ (U ∪ V) and each α, we
can further build a linked list of the edges connecting n
and its neighbors n′, in which the edges are sorted by β̂n′,α.
For instance, the vertex u5 has three neighbors {v2, v4, v5},
and as shown in Fig. 3(b), for n′ = v2, v4, v5, β̂n′,α are
respectively 2, 2, and 1 when α = 1. Then, we can build
the following linked list.

(u5 → v2, 2)→ (u5 → v4, 2)→ (u5 → v5, 1)→ ⊥

While extracting an (α, β)-core, we can traverse the neigh-
bors of n through the linked list until encountering a neigh-
bor n′ whose β̂n′,α < β. In this way, we can reduce the
number of traversed neighbors and hide the number of
vertices linked to n, i.e., deg(n).

4.2 Description of Our Basic Scheme
Based on the idea presented in Section 4.1, we propose our
basic privacy-preserving (α, β)-core query scheme, which
comprises four algorithms, namely, System Initialization,
Graph Outsourcing, Query Encryption, and Query Conducting.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

4

α = 1, β = 1 α = 2, β = 1 α = 3, β = 1

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5

α = 1, β = 2 α = 2, β = 2

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5
α = 1, β = 3 and α = 1, β = 4

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5

(a) Vertices are increasingly pruned as α and β increase.

4 0 0

4 2 1

4 2 0

4 0 0

2 2 1

2 0 0

4 2 1

2 2 1

2 1 1

2 2 1

1 1 1

α = 1 α = 2 α = 3
u1
u2
u3
u4
u5
u6
v1
v2
v3
v4
v5

(b) β̂n,α for all n ∈ (U ∪ V).

Fig. 3. Given a graph G = {U ,V, E}, we compute the maximum β for each vertex n ∈ (U ∪ V) with different α, such that n is an element of an
(α, β)-core. For example, when α = 3, u2 is not pruned until β = 2. Hence, β̂u2,3 = 1, as shown in the table.

Algorithm 1 Conducting (α, β)-core query with T
Input: the query request req = {R, α, β}, the table T
Output: the (α, β)-core query result Greq

1: Initialize an empty queue Q
2: Initialize a mapping visited maps n ∈ (U ∪ V) to a boolean false
3: for all n ∈ R do
4: Enqueue n into Q if β̂n,α ≥ β
5: Set visited[n] = true for each n ∈ Q
6: while Q 6= ∅ do
7: Take a vertex n from Q
8: Add n to the Ureq or Vreq
9: for all n′ ∈ neighbor(n) do

10: Obtain β̂n′,α from T
11: if β̂n′,α ≥ β and visited[n′] == false then
12: Enqueue n′ into Q
13: Set visited[n′] = true

14: Compute Ereq = E ∩ (Ureq × Vreq)
15: return Greq = (Ureq,Vreq, Ereq)

4.2.1 System Initialization

In this algorithm, the data owner DO generates the secrets
for all entities in the system and securely distributes the se-
crets. Specifically, DO first runs the Key Generation algorithm
of the SHE scheme to obtain a public parameter PP and
the corresponding secret key SK . Then, DO computes two
SHE ciphertexts of 0, i.e., {E(0)1, E(0)2}. Furthermore, DO
generates two secret keys K1 and K2 for a symmetric-key
encryption scheme SE(·), e.g., Advanced Encryption Stan-
dard (AES). After that, DO publishes (PP , E(0)1, E(0)2),
and respectively distributes K1 and (SK , K2) to CS1 and CS2.
Finally, it sends (K1, K2) to authorized query users.

4.2.2 Graph Outsourcing

With the SK and PP generated during the system initial-
ization, DO encrypts the bipartite graph G by running the
following steps.
• First, DO computes the maximum degree of vertices

in the graph G, i.e., αmax = maxu∈U deg(u). Then, for αk =
1, 2, · · · , αmax, DO calculates β̂n,αk

for each vertex n ∈ (U ∪
V) and builds the table T .
• Then, as shown in Fig. 4, DO builds two tables

NodeTable and EdgeTable in the following steps.

1) For each αk and each vertex n ∈ (U ∪ V), DO builds
a linked list Ln,αk

containing all edges connecting n and its
neighbors n′, and the elements in Ln,αk

are sorted by the
corresponding β̂n′,αk

in descending order.
2) DO builds a table NodeTable where each row repre-

sents a vertex n ∈ (U ∪V), and it has 2×αmax columns. For
each αk = 1, · · · , αmax, there are two columns representing
the head of the linked list Ln,αk

and the maximum beta
value, denoted by n.headαk

and n.β̂αk
, respectively.

3) DO builds a table EdgeTable where each row repre-
sents an edge ei,j = (ui, vj) ∈ E , and there are 2 + 2×αmax
columns in EdgeTable. In addition to two pointers linked to
ui and vj in NodeTable, there are αmax groups of columns.
For the αk-th group, there are two columns, namely,
ei,j .nextu,αk

and ei,j .nextv,αk
representing the next edges

in Lu,αk
and Lv,αk

, respectively.
• After that, the data owner DO encrypts the two tables

with PP and SK . For each pointer ptr(ei,j) (resp., ptr(ui)
or ptr(vj)) to a row in EdgeTable (resp., NodeTable), to
support OP1 (row/column retrieving) in Section 4.2.4, we
encrypt it in a little-endian bit-wise manner and get an array
of `e = dlog2(|E|+ 1)e (resp., `n = dlog2(|U ∪ V|+ 1)e) SHE
ciphertexts. For instance, given |U ∪ V| = 11, the pointer
ptr(u3) = 3 of the edge (u3 → v1) in EdgeTable will be
encrypted into an array of dlog2 12e = 4 SHE ciphertexts,
denoted as [[ptr(u3)]] = {E(1), E(1), E(0), E(0)}. Note
that, as SHE is IND-CPA secure, the two E(1)s here denote
two different ciphertexts of 1, and the same case for the two
E(0)s. As for the non-pointer field, i.e., n.β̂αk

, it will be
encrypted into an SHE ciphertext n.E(β̂αk

).
At the end of the algorithm, the data owner DO uploads

the two encrypted tables, denoted by [[NodeTable]] and
[[EdgeTable]], to the cloud server CS1, and the latter stores
them for answering (α, β)-core queries.

4.2.3 Query Encryption

As (α, β)-core queries may contain some sensitive informa-
tion, query users need to encrypt them before submitting
them to the cloud. Note that, without knowing the secret key
SK , the query users can generate SHE ciphertexts through

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

5

(u1 → v1) ⊥u1

(u2 → v1)u2 (u2 → v2) (u2 → v3) ⊥
(u3 → v1)u3 (u3 → v4) ⊥
(u4 → v1)u4 ⊥
(u5 → v2)u5 (u5 → v4) (u5 → v5) ⊥
(u6 → v3)u6 ⊥

(u1 → v1)v1

(u2 → v2)v2

(u2 → v1) (u3 → v1)

(u2 → v3)v3 (u6 → v3) ⊥
(u3 → v4)v4

(u5 → v5)v5 ⊥

(u4 → v1) ⊥
(u5 → v2) ⊥

(u5 → v4) ⊥

(b) Linked Lists of edges when α = 1

Index

1 4 1

2 4 2

3 4 5

4 4 7

5 2 8

6 2 11

7 4 1

8 2 3

9 2 4

10 2 6

11 1 10

α1 = 1 α2 α3

#$%&̂β ⋯ ⋯

⋯ ⋯

⋯ ⋯

(a) ()*+,-./+

⋯ ⋯

(c) 0*1+,-./+

Index

1 1 7 0 2

2 2 7 3 5

3 2 8 4 8

4 2 9 0 11

5 3 7 6 7

6 3 10 0 9

7 4 7 0 0

8 5 8 9 0

9 5 10 10 0

10 5 11 0 0

11 6 9 0 0

ui vj

α1 = 1 α2 α3

2$345 2$346 ⋯ ⋯

Fig. 4. The linked lists of neighbors n for each vertex sorted by their β̂n,α when α = 1, and NodeTable and NodeTable derived from the linked lists.
As shown in the figure, the heads of the linked lists are organized in NodeTable and linked lists are saved in EdgeTable.

Eq. (1), where r1, r2 ∈ {0, 1}k2 are randomly chosen, and
the obtained SHE ciphertexts are still IND-CPA secure [34].

E(m) = m+ r1 · E(0)1 + r2 · E(0)2 mod N (1)

Then, given an (α, β)-core query request req = {R, α, β}, a
query user runs the following steps to build a query token.
• For each n ∈ R, the query user will convert it into a

pointer ptr(n) and encrypts it into `n = dlog2(|U ∪ V| +
1)e SHE ciphertexts following the same approach used in
Section 4.2.2. In addition, the query user attaches a bit flagn
to the encrypted pointer, where flagn = 1 if n ∈ U , and
flagn = 0 if n ∈ V . Thereby, the query user obtains [[R]] =
{([[ptr(n)]], flagn) | n ∈ R}.
• Similarly, the query user encrypts α into an array

of `α = dlog2(αmax + 1)e SHE ciphertexts, denoted by
[[ptr(α)]]. Then, it encrypts β as an SHE ciphertext E(β).
• Furthermore, the query user randomly chooses

two keys TK1 and TK2 for the symmetric-key encryp-
tion scheme. Then, it generates two ciphertexts, namely,
SE(K1, TK1‖ts‖uid) and SE(K2, TK2‖ts‖uid), where ts is the
current timestamp and uid is the identity of the query user.
• Finally, the query user submits the encrypted query

token [[req]] = {[[R]], [[ptr(α)]], E(β), SE(K1, TK1‖ts‖uid),
SE(K2, TK2‖ts‖uid)} to CS1.

4.2.4 Query Conducting
Upon receiving an encrypted query request [[req]], the two
cloud servers conduct the (α, β)-core query over the en-
crypted index. Before detailing this phase, we first introduce
three basic operators of the two cloud servers.

OP1: Row/Column Retrieving. In this scheme, there
are three types of encrypted pointers [[ptr(n)]], [[ptr(ei,j)]],
and [[ptr(α)]] pointing to a row in NodeTable, a row in
EdgeTable, and a group of columns in both tables, re-
spectively. We take [[ptr(α)]] and the columns n.E(β̂αk

) in
NodeTable as an example and show how CS1 retrieves the
column n.E(β̂αk

) with αk = α from all αmax columns with
the following two steps.
• First, by running Alg. 2, it obtains αmax SHE cipher-

texts E(αk = α), which will be E(1) if αk = α, and E(0)
otherwise. In the algorithm, CS1 compares each αk and α in

a bit-wise manner. If a pair of corresponding bits of αk and
α are not equal, the intermediate comparison output will be
E(0); otherwise, it will beE(1) orE(−1) as shown in Alg. 2.
After that, CS1 combines the comparison results through
multiplication and multiplies an extra E(−1) if needed,
such that the overall result is E(0) if any of the intermediate
comparison results is E(0), and E(1) otherwise.

Algorithm 2 Computing E(x = y)

Input: a plaintext x and an array of ciphertexts [[y]] = {[[y]][i]}[[y]].leni=0
Output: an encrypted flag E(x = y)

1: acc = 1
2: ctr = 0 . A counter for the number of ’0’ bits in x
3: for i = 0; i < [[y]].len; i++ do
4: if x & (1� i) > 0 then . Determine whether the i-th bit is ’0’
5: val = [[y]][i] . [[y]][i]= 1 if the bits are equal
6: else
7: val = [[y]][i] −1 . [[y]][i]−1 = 1 if the bits are equal
8: ctr ++
9: acc = acc * val mod N

10: if ctr.isOdd() then . If x has an odd number of ’0’ bits
11: acc *= E(−1)
12: return acc

• After that, CS1 computes Eq. (2) on each row. In the
equation, each cell n.E(β̂αk

) will be multiplied with the
corresponding E(αk = α) and added together. Thereby,
those n.E(β̂αk

) linked to αk 6= α are eliminated.

n.E(β̂) =
∑αmax

1
n.E(β̂αk

)× E(αk = α) mod N (2)

OP2: Visited Vector Updating. As shown in Alg. 1,
during traversing, CS1 needs to test whether a vertex has
been visited and whether an edge has been added to the
result set, and proceed if not. To this end, it needs to
maintain two encrypted vectors Vn and Ve, where each
encrypted bit 0 represents a visited edge or vertex. After
each OP1 operation on rows in NodeTable and EdgeTable,
CS1 correspondingly updates the vectors Vn and Ve.

We take NodeTable as an example. Initially, CS1 allocates
Vn as an array of 1’s and |Vn| = |U ∪ V|, indicating all
vertices have not been visited. Then, after running an OP1
operation to retrieve the row pointed by ptr(n), CS1 obtains

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

6

E(ptr(n) = j) for the j-th row in the table, CS1 updates
Vn[j] by computing

Vn[i]← Vn[i] · (1 + E(ptr(n) = i) · E(−1)) mod N .

Then, if a vertex n ∈ (U ∪ V) is visited, Vn[ptr(n)] will be
an SHE ciphertext E(0); otherwise, it will be E(1).

OP3: Bootstrapping. As analyzed in Section 2.2, the
SHE scheme supports a limited number of homomorphic
multiplications between ciphertexts. Therefore, once an SHE
ciphertext c = E(m) is about to exceed the limitation δ,
CS1 runs this operation with CS2 to obtain c∗ = E(m).
Specifically, CS1 and CS2 run the following steps.
• First, CS1 homomorphically computes c̃ = E(m + r),

where r ∈M is a random number. Then, it sends c̃ to CS2.
• On receiving c̃, CS2 decrypts it and gets m̃ = m + r.

With SK , CS2 generates another ciphertext c̃∗ = E(m̃) and
sends it to CS1.
• Finally, CS1 computes c∗ = c̃ − r as a refreshed

ciphertext of the message m.
Based on OP1, OP2 and OP3, the two cloud servers

conduct the query in the following phases.
Phase 1: Token Verification. The two cloud servers verify

the query token and prepare for conducting the (α, β)-core
query. Specifically, they run the following steps.

1) CS1 decrypts SE(K1, TK1‖ts‖uid) with K1 and gets TK1,
ts, and uid. If the timestamp ts is fresh, CS1 keeps TK1

and sends SE(K2, TK2‖ts‖uid) to CS2. Otherwise, it stops the
query process.

2) On receiving SE(K2, TK2‖ts‖uid), CS2 decrypts it and
gets TK2, ts, and uid. Similarly, it verifies the freshness of ts
and keeps TK2.

3) CS1 excludes the columns in NodeTable and
EdgeTable that link to αk 6= α by running OP1, and
we denote the resulting tables as [[NodeTable]][α] and
[[EdgeTable]][α].

Phase 2: Queue Initialization. CS1 and CS2 run the fol-
lowing steps to initialize a queue Q based on the encrypted
query request.

1) CS1 initializes an empty queue Q. Then, it constructs
two visited vectors for OP2, namely, a vector Vn of length
|U∪V| and a vector Ve of length |E|. Elements in both vectors
are initialized to be 1.

2) For each ([[ptr(n)]], flagn) ∈ [[R]], the two servers
jointly run Steps (3)–(6).

3) By running OP1, CS1 retrieves the corresponding row
of n in [[NodeTable]][α] and gets n.E(β̂α) and n.[[headα]].
Based on the property of OP1, CS1 will not know the
location of each n ∈ R in the table [[NodeTable]][α].

4) CS1 randomly generates a bit b ∈ {0, 1}. Then, based
on b, CS1 homomorphically computes E(x̃) through Eq. (3),
where r1 and r2 are two random integers satisfying 0 <
r2 < r1 and r1 ∈ {0, 1}k1−1. Then, it sends E(x̃) to CS2.

E(x̃) =

{
r1 · (n.E(β̂α) + E(−1) · E(β)) + r2 mod N , b = 1,

r1 · (E(β) + E(−1) · n.E(β̂α))− r2 mod N , b = 0.
(3)

5) On receiving E(x̃), CS2 decrypts it with SK and
gets x̃. After that, it compares x̃ with L/2. Based on the
comparison result, it sends σ = 1 to CS1 if x̃ < L/2, and it
sends σ = 0 otherwise.

6) If σ = b, indicating that n.β̂ ≥ β, CS1 enqueues
(n.[[headα]], flagn) into Q, where the first field points to an

edge ei,j in EdgeTable, and the second field flagn indicates
whether this vertex n ∈ U or not.

Phase 3: Index Traversing. CS1 initializes an empty array
Edges. Then, it jointly executes the query with CS2 by
traversing the index with the help of the queue Q. They
run the following steps on each tuple ([[ptr(ei,j)]], flagn)
dequeued from Q until Q is empty.

1) By running OP1 over [[EdgeTable]][α], CS1 obliviously
retrieves the row corresponding to ei,j , and it obtains
[[ptr(ui)]], [[ptr(vj)]], [[nextu]], and [[nextv]] of ei,j .

In the following steps, we use n to denote the vertex
under traversing and use n′ to denote the current visiting
neighbor of n as shown in Alg. 1. Specifically, when flagu =
1, we set n = ui and n′ = vj ; otherwise, we set n = vj and
n′ = ui.

2) CS1 runs OP1 with the encrypted pointer [[ptr(n′)]]
on [[NodeTable]][α] to obliviously retrieve the corresponding
n′.E(β̂α) and n′.[[headα]].

3) By running Steps 4–5 in Phase 2 with CS2, the
cloud server CS1 securely compares n′.E(β̂α) and E(β).
If n′.β̂α < β, the two servers skip the following steps
and proceed to the next iteration. Otherwise, CS1 enqueues
ei,j .[[nextn′,α]] to Q.

4) With [[ptr(n′)]] and [[ptr(ei,j)]], CS1 runs OP1 to
retrieve Vn[ptr(n′)] and Ve[ptr(ei,j)]. After that, it runs
OP2 to respectively set Vn[ptr(n′)] and Ve[ptr(ei,j)] to be
E(0). During this step, CS1 does not know which locations
in Vn and Ve have been accessed.

5) CS1 computes E(ṽn′) = Vn[ptr(n′)] + r1 mod N and
E(ṽe) = Ve[ptr(ei,j)] + r2 mod N , where r1 and r2 ∈ M
are two random numbers chosen independently. Then, it
sends E(ṽn′) and E(ṽe) to CS2.

6) On receiving E(ṽn′) and E(ṽe), CS2 decrypts them
and returns ṽn′ and ṽe to CS1.

7) CS1 further computes v̄n′ = ṽn′ − r1 mod N and v̄e =
ṽe − r2 mod N . If v̄n′ = 1, i.e., the vertex n′ has not been
visited, CS1 enqueues (n′.[[headα]], 1−flagn) into Q. If v̄e =
1 indicating that the edge ei,j = (ui → vj) has not been
added to Edges, then CS1 appends ([[ptr(ui)]], [[ptr(vi)]]) to
Edges.

Phase 4: Result Re-encryption. CS1 and CS2 build the
query response from Edges. For each tuple ([[ptr(ui)]],
[[ptr(vj)]]) ∈ Edges, they run the following steps.

1) CS1 aggregates the encrypted pointer into one SHE
ciphertext by computing

E(ptr(ui)) =
∑`n−1

t=0
[[ptr(ui)]][t] · 2t mod N ,

where `n = dlog2(|U ∪ V| + 1)e, and [[ptr(ui)]][k] repre-
sents the k-th element in [[ptr(ui)]]. Similarly, it computes
E(ptr(vj)) from [[ptr(vj)]].

2) CS1 homomorphically computes E(ẽi,j) = E(ēi,j +
r3), where ēi,j = ui · (|V|+ 1) +vj , and r3 ∈M is a random
number. After that, it sends E(ẽi,j) to CS2.

3) CS2 decrypts the received E(ẽi,j) and gets ẽi,j . Then,
CS2 encrypts it with TK2, i.e., SE(TK2, ẽi,j), and sends the
resulting ciphertext to CS1.

4) CS1 encrypts r3 with TK1, i.e., SE(TK1, r3). Then, it
sends (SE(TK1, r3), SE(TK2, ẽi,j)) to the query user.

By decrypting these edges from CS1, the query user can
reconstruct the returned (α, β)-core Greq = {Ureq,Vreq, Ereq}.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

7

Specifically, for each (SE(TK1, r3), SE(TK2, ẽi,j)) from CS1,
the query user can decrypt them with TK1 and TK2 and
get (r3, ẽi,j). Then, he/she can compute ēi,j = ẽi,j − r3 =
ui · (|V| + 1) + vj and further extract ui = bēi,j/(|V| + 1)c
and vj = ēi,j mod (|V|+ 1). Finally, the query user updates
Greq by computing Ureq ← Ureq ∪ {ui}, Vreq ← Vreq ∪ {vj},
and Ereq ← Ereq ∪ {ui → vj}.

4.3 Security Analysis for the Basic Scheme
In this subsection, we analyze the security of our basic
scheme. As proved in [34], the ciphertexts obtained through
Eq. (1) are IND-CPA secure. Based on this, we recall the
definition of security model for securely implementing an
ideal functionality with semi-honest adversaries in [35] and
prove the two honest-but-curious cloud servers CS1 and CS2

cannot obtain 1) the plaintext and structure of the dataset
(the bipartite graph); 2) the plaintext of the encrypted query
requests and the corresponding results; and 3) the access
pattern, i.e., the vertices and edges visited during executing
queries. The security model consists of a real model and an
ideal model as follows.

Real Model. The real-world execution of our basic scheme
ΠB happens between the two servers {CS1,CS2}, and
A = {A1,A2} is the pair of adversaries controlling the two
servers, respectively. Assume that the inputs of CS1 and CS2

are respectively x = {K1, [[EdgeTable]], [[NodeTable]], [[req]]}
and y = {SK , K2}, and z is auxiliary input, e.g., public
parameters. Then, with the inputs x, y, and z, the execution
of ΠB under A in the real model can be defined as

REALΠB ,A,z(x, y)
def
= {OutputΠB (x, y),ViewΠB (x, y), z},

in which pairs OutputΠB (x, y) = {OutputΠB
i (x, y)}2i=1 and

ViewΠB (x, y) = {ViewΠB
i (x, y)}2i=1 are the outputs and

views of {CSi}2i=1 during the execution, respectively.
Ideal Model. In the ideal-world execution, there is a pair

of ideal functionalities F = {F1,F2} respectively imple-
menting the computation of the two servers, denoted as
f1 and f2, and each cloud server CSi interacts with the
corresponding ideal functionality Fi. Here, the execution of
f = (f1, f2) under simulators Sim = {Sim1, Sim2} in the
ideal-world model on input pair (x, y) and auxiliary input
z is defined as

IDEALF,Sim,z(x, y)
def
=

{
f1(x, y), Sim1(x, f1(x, y)),

f2(x, y), Sim2(y, f2(x, y)), z

}
.

Definition 2 (Security of ΠB against semi-honest adver-
sary). Let F be a deterministic functionality and ΠB a protocol
between the two servers. We say that ΠB securely realizes F if
there exists Sim of probabilistic polynomial-time (PPT) transfor-
mations (where Sim = Sim(A)) such that for semi-honest PPT
adversariesA = {A1,A2}, for x, y and z, for {CS1,CS2} holds:

REALΠB ,A,z(x, y)
c≈ IDEALF,Sim,z(x, y),

where
c≈ compactly denotes computational indistinguishability.

Next, we show that our basic scheme can protect the
plaintext and structure of the dataset, the plaintext of query
requests and results, and the access pattern.

Theorem 1. The basic scheme can protect the plaintext and
structure of the original bipartite graph G, the plaintext of query

requests and results, and the access pattern against the adversaries
A = {A1,A2}.

Proof. Here, we show how to construct the simulators Sim =
{Sim1, Sim2}. Given {x, f1(x, y), z}, where f1(x, y) =
{{σ = b}, {v̄n′}, {v̄e}, |Edges|} denotes the output of CS1

while conducting a query, Sim1 simulates A1 as follows: i)
Sim1 randomly chooses {SE(TK′2, ẽi,j)}′, an array of |Edges|
SE ciphertexts corresponding to a random secret key TK′2;
ii) it outputs A1’s view. In addition to x and f1(x, y), A1

receives {SE(TK2, ẽi,j)} in the real execution, while Sim1

outputs {SE(TK′2, ẽi,j)}′ during the ideal execution. Since
TK2 is randomly generated, based on the security of the un-
derlying SE scheme, the views of A1 in the two executions
are indistinguishable. On the other hand, given f2(x, y) =
{|{ṽn′}|, |{ṽe}|, |Edges|}, Sim2 simulates A2 as follows: i)
it respectively chooses four vectors of random plaintexts
for the SHE scheme of lengths |{ṽe}|, |Edges|, |{ṽn′}|, and
|{ṽe}|, denoted by {x̃}′, {ẽi,j}′, {ṽn′}′, and {ṽe}′; ii) it
constructs the view of A2. In addition to x and f2(x, y), A2

receives {{x̃}, {ẽi,j}, {ṽn′}, {ṽe}} during the real execution,
while Sim2 outputs {{x̃}′, {ẽi,j}′, {ṽn′}′, {ṽe}′} during the
ideal execution. Since all SHE plaintexts received by A2 are
added with random numbers by CS1, the views ofA2 in the
two executions are indistinguishable.

Thus, the adversaries A1 and A2 obtain nothing other
than {x, f1(x, y) = {{σ = b}, {v̄n′}, {v̄e}, |Edges|}, z}
and {y, f2(x, y) = {|{ṽn′}|, |{ṽe}|, |Edges|}}, respectively.
Hence, A1 and A2 cannot derive any useful information
related to i) the plaintext and structure of of the original
bipartite graph G; ii) the plaintext of the query requests and
results; and iii) which of the vertices and edges are visited,
i.e., the access pattern.

5 OUR SECURITY-ENHANCED QUERY SCHEME

In this section, to further hide the structure of the query
requests and results (i.e., |U ∩ R|, |V ∩ R|, |Ureq|, |Vreq|,
and {deg(n) | ∀n ∈ Ureq ∪ Vreq}), we propose a scheme
to enhance the security of the basic scheme. After that,
we present the security analysis of the resulting security-
enhanced scheme.

5.1 Description of Our Security-Enhanced Scheme

Compare to the basic scheme, the security-enhanced one
has exactly the same System Initialization algorithm. As for
the Query Encryption algorithm, the only difference is that
the encrypted set of query vertices [[R]] = {[[ptr(n)]] | n ∈
R ⊆ (U ∪ V)}, i.e., the flagns in that of the basic scheme
are removed as they will reveal the structure of the query
requests. Hence, we present its Graph Outsourcing and Query
Conducting algorithms as follows.

5.1.1 Graph Outsourcing
After running System Initialization, DO encrypts the bipartite
graph G with PP and SK by running the following steps.
• First, DO builds the table T containing β̂n,αk

for each
vertex n ∈ (U ∪ V) and all possible αk = 1, · · · , αmax.
• Then, DO builds two tables NodeTable∗ and

EdgeTable∗ in the following steps.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

8

⋯

(b) "#$%&'()%*

⋯
⋯

Index

1 1

2 2

3 5

4 7

5 8

6 11

7 1

8 3

9 4

10 6

11 10

*+,-.

⋯

⋯

(a) /0#%&'()%*

⋯ Index

1 1 7 0 0 4 0 2 4

2 2 7 0 3 4 1 5 4

3 2 8 2 4 4 0 8 2

4 2 9 2 0 4 0 11 2

5 3 7 0 6 4 1 7 4

6 3 10 5 0 4 0 9 2

7 4 7 0 0 4 1 0 4

8 5 8 0 9 2 3 0 2

9 5 10 8 10 2 6 0 2

10 5 11 8 0 2 0 0 1

11 6 9 0 0 2 4 0 2

ui vj 1+234 1+235̂β 4

α1 = 1
+,-5+,-4 ̂β 5

Fig. 5. The two tables NodeTable∗ and EdgeTable∗ built from the linked
lists {Ln,α | n ∈ (U ∪ V), α = 1, · · · , αmax}.

1) DO first constructs the linked lists {Ln,αk
| n ∈ (U ∪

V), αk = 1, · · · , αmax}.
2) DO builds a table NodeTable∗ where each row repre-

sents a vertex n ∈ (U ∪V), and the table has αmax columns.
For each αk = 1, · · · , αmax, the table records the header of
Ln,αk

for each vertex n, denoted by n.headαk
.

3) DO further builds a table EdgeTable∗ where each row
represents an edge ei,j = (ui ∈ U , vj ∈ V) ∈ E , and the
table has 2 + 6×αmax columns. In addition to two columns
ui and vj , there are αmax groups of columns. For the αk-th
group, there are 6 columns, namely, headu,αk

and headv,αk

representing the headers of Lui,αk
and Lvj ,αk

, nextu,αk
and

nextv,αk
representing the next edges after ei,j in the two

linked lists, and β̂u,αk
and β̂v,αk

representing β̂ui,αk
and

β̂vj ,αk
. Note that, for ei,j .headu,α and ei,j .headv,α, they will

be set to 0 if they are equal to the edge’s index. For example,
as shown in Fig. 5, Lv2,1 = 3 (the 8-th line in NodeTable∗),
so we have e2,2.headv,α = 0 in the third edge in EdgeTable∗.
• After that, DO encrypts NodeTable∗ and EdgeTable∗

into [[NodeTable∗]] and [[EdgeTable∗]]. Specifically, he/she
runs the following steps.

1) For each n.headαk
in NodeTable∗, DO encrypts it into

n.[[headαk
]]. Similarly, he/she encrypts headu,α, headv,α,

nextu,α and nextv,α of EdgeTable∗ and gets [[headu,α]],
[[headv,α]], [[nextu,α]] and [[nextv,α]].

2) For each headu,α in EdgeTable∗, DO further gen-
erates a ciphertext E(headu,α 6= 0), which will be E(1)
if headu,α 6= 0, and it will be E(0) otherwise. Similarly,
DO computes E(headv,α 6= 0), E(nextu,α 6= 0), and
E(nextv,α 6= 0) for EdgeTable∗.

3) For β̂ui,αk
and β̂vj ,αk

, DO respectively encrypts them
into SHE ciphertexts E(β̂u,αk

) and E(β̂v,αk
).

4) Furthermore, DO computes ēi,j = ui × (|V|+ 1) + vj
and encrypts it into an SHE ciphertext E(ēi,j).

At the end of the algorithm, DO submits [[NodeTable∗]]
and [[EdgeTable∗]] to the cloud server CS1.

5.1.2 Query Conducting

With the two tables, the two cloud servers {CS1,CS2} can
jointly answer encrypted (α, β)-core queries from query
users. Before delving into the details, we first introduce an
operator for the cloud server CS1.

OP4: Encrypted Queue. To enhance the privacy of the
basic scheme, we replace the queue Q in Section 4.2.4
with an encrypted one, denoted by [[Q]], which can insert
an element if an encrypted flag E(enable) is E(1), and
ignore the insertion if E(enable) is E(0). In this way,
[[Q]] can hide whether an insertion to the queue actually
inserts an element or not. [[Q]] comprises two components,
namely, [[Q]].arr and [[Q]].tail. On the one hand, [[Q]].arr is
an array of encrypted elements in [[Q]], and it is initialized
to be an empty array. On the other hand, [[Q]].tail is an
array containing [[Q]].arr.len() SHE ciphertexts of 0 and one
ciphertext of 1, and the location E(1) in [[Q]].tail indicates
the first empty space in [[Q]].arr. For example, after several
enqueue and dequeue operations, a possible status of [[Q]]
might be [[Q]].arr = {E(39), E(11), E(6), E(0), E(0)}, and
[[Q]].tail = {E(0), E(0), E(0), E(1), E(0), E(0)}.

Algorithm 3 Operations on the encrypted queue [[Q]]

1: procedure ENQUEUE([[Q]], E(elem), E(enable))
2: E(elem) = E(elem)× E(enable)
3: append([[Q]].arr, 0)
4: append([[Q]].tail, 0)
5: for i = 0, · · · , [[Q]].arr.len()−1 do
6: [[Q]].arr[i] = [[Q]].arr[i] + [[Q]].tail[i]× E(elem) mod N
7: for i = [[Q]].tail.len()−1, · · · , 0 do
8: if i 6= 0 then
9: prev = [[Q]].tail[i− 1]

10: else
11: prev = 0

12: curr = [[Q]].tail[i]
13: [[Q]].tail[i] = E(enable)× (prev− curr) + curr mod N

14: procedure DEQUEUE([[Q]])
15: E(elem) = [[Q]].arr.removeFirst()
16: E(isEmpty) = [[Q]].tail.removeFirst()
17: return (E(elem), E(isEmpty))

Based on these two components, [[Q]] can support EN-
QUEUE and DEQUEUE, as shown in Alg. 3. These two
procedures respectively run as follows.
• ENQUEUE: While enqueueing an encrypted element

E(elem), CS1 first respectively appends a value 0 at the
end of both [[Q]].arr and [[Q]].tail. Then, it updates each
[[Q]].arr[i] by computing

[[Q]].arr[i] = [[Q]].arr[i] + E(elem)× E(enable)× [[Q]].tail[i] mod N .

That is, the encrypted element will only be added to the
location where [[Q]].tail[i] = E(1) and when E(enable) =
E(1). After that, the algorithm updates [[Q]].tail based on
E(enable). If E(enable) = E(1), the algorithm inserts an
E(0) at the beginning of [[Q]].tail; otherwise, it appends an
E(0) at the end of [[Q]].tail, as shown in Line 13 of the
algorithm.
• DEQUEUE. While dequeueing an element E(elem)

from [[Q]], CS1 removes the first elements in [[Q]].arr and
[[Q]].tail, and respectively denotes these two elements as
E(elem) and E(isEmpty). Then, it sends E(isEmpty) to
CS2, and the latter returns isEmpty. If isEmpty = 1,
CS1 knows that [[Q]] is empty. Otherwise, E(elem) is the
encrypted element dequeued from [[Q]].

Based on OP4, along with the three operators defined in
Section 4.2.4, CS1 and CS2 can conduct an (α, β)-core query
in the following phases.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

9

Phase 1: Token Verification. Similar to Phase 1 in
Section 4.2.4, the two servers CS1 and CS2 verify the
encrypted query token [[req]] = {[[R]], [[ptr(α)]], E(β),
SE(K1, TK1‖ts‖uid), SE(K2, TK2‖ts‖uid)} and respectively
obtain TK1 and TK2. Then, CS1 obtains [[NodeTable∗]][α] and
[[EdgeTable∗]][α] through OP1.

Phase 2: Queue Initialization. CS1 initializes an empty
encrypted queue [[Q]] following OP4. Furthermore, it allo-
cates two vectors Vn and Ve defined in OP2. Different from
those in Section 4.2.4, both of them have the same length of
|E|. Then, for each element [[ptr(n)]] ∈ [[R]], CS1 runs the
following two steps.

1) By running OP1, CS1 retrieves the row in
[[NodeTable∗]][α] corresponding to [[ptr(n)]], and it gets
n.[[headα]].

2) CS1 runs OP4 to enqueue the obtained n.[[headα]] into
the encrypted queue [[Q]] with E(enable) = 1. Then, it runs
OP2 to set Vn[n.[[headα]]] = E(0).

Phase 3: Index Traversing. CS1 and CS2 jointly conduct
the query by traversing the bipartite graph with the help
of [[Q]]. Specifically, they run the following steps on each
element [[ptr(ei,j)]] dequeued from [[Q]] until [[Q]] is empty.

1) CS1 retrieves the row corresponding to [[ptr(ei,j)]] in
[[EdgeTable∗]][α] through OP1, and it gets E(ēi,j), [[headu,α]],
[[nextu,α]], E(β̂u,α), [[headv,α]], [[nextv,α]], E(β̂v,α).

2) CS1 randomly generates a bit b ∈ {0, 1}, and two
positive random integers r1 and r2 satisfying 0 < r2 <
r1 < 2k1−1. Then, it homomorphically computes E(x̃) =
E(r1(β̂u,α−β)+r2) if b = 0, orE(x̃) = E(r1(β−β̂u,α)−r2),
otherwise. After that, it sends E(x̃) to CS2.

3) On receiving E(x̃), CS2 decrypts it and gets x̃. If
x̃ < L/2, CS2 sets E(σ) = E(1) and E(σ) = E(0);
otherwise, it sets E(σ) = E(0) and E(σ) = E(1). Then,
it sends (E(σ), E(σ)) to CS1.

4) On receiving (E(σ), E(σ)), if b = 0, CS1 setsE(β̂u,α ≥
β) = E(σ) and E(β̂u,α < β) = E(σ); otherwise, it sets
E(β̂u,α ≥ β) = E(σ) and E(β̂u,α < β) = E(σ). Similarly,
CS1 gets two encrypted flags E(β̂v,α ≥ β) and E(β̂v,α < β).

5) CS1 homomorphically computes an encrypted flag

E(enable1) = E(β̂u,α ≥ β)E(headu,α 6= 0)Vn[headu,α] mod N ,

and it runs ENQUEUE([[Q]], [[headu,α]], E(enable1)) to try
enqueueing [[headu,α]] into [[Q]]. Based on the property of
OP4, [[headu,α]] will be enqueued if E(enable1) is E(1),
which indicates that i) β̂u,α ≥ β; ii) headu,α is not empty;
and iii) headu,α has not been visited.

6) Similarly, CS1 computes three encrypted flags

E(enable2) = E(β̂u,α ≥ β)E(nextu,α 6= 0)Vn[nextu,α] mod N ,
E(enable3) = E(β̂v,α ≥ β)E(headv,α 6= 0)Vn[headv,α] mod N ,
E(enable4) = E(β̂v,α ≥ β)E(nextv,α 6= 0)Vn[nextv,α] mod N .

Based on these flags, CS1 respectively runs ENQUEUE to
try enqueueing [[nextu,α]], [[headv,α]], and [[nextv,α]] into [[Q]].
Note that, although CS1 invokes four ENQUEUE operations
for each [[ptr(ei,j)]], there will be at most three elements
been inserted. This is because that, for a certain edge (u, v),
it must fall into one of the two cases: i) it is the first element
in the linked lists, then [[headu,α]] or [[headv,α]] will be empty;
ii) it is not the first element in the linked lists, then [[headu,α]]

or [[headv,α]] must has been visited. In both cases, [[headu,α]]
or [[headv,α]] will not be enqueued. Hence, CS1 removes the
last element from [[Q]] after running the four insertions.

7) CS1 computes an encrypted E(flag) = E(β̂u,α ≥
β)E(β̂v,α ≥ β)Ve[ei,j] mod N and E(ẽij) = E(ēi,j + r),
where r ∈ M is a random number. Then, CS1 sends
SE(TK1, r), E(flag), and E(ẽi,j) to CS2.

8) On receiving SE(TK1, r), E(flag) and E(ẽi,j), CS2 de-
crypts E(flag) and E(ẽi,j) to get flag and ẽij . If flag = 1,
CS2 sends (SE(TK1, r), SE(TK2, ẽi,j)) to the query user.

For the query user, it first initializes an empty bipar-
tite graph Greq = (Ureq,Vreq, Ereq). Upon receiving each
(SE(TK1, r), SE(TK2, ẽi,j)), the query user uses TK1 and TK2

to respectively decrypt the two parts and gets (r, ẽi,j). Then,
he/she can compute ēi,j = ẽi,j−r = ui×(|V|+1)+vj . Based
on ēi,j , the query user further obtains ui = bēi,j/(|V| + 1)c
and vi = ēi,j mod (|V| + 1). After that, the query user
updates Greq by computing Ureq = Ureq ∪ {ui}, Vreq =
Vreq∪{vj}, and Ereq = Ereq∪{(ui, vj)}. Finally, after receiving
all messages from CS2, the query user can recover the query
result Greq = (Ureq,Vreq, Ereq).

5.2 Security Analysis for the Enhanced Scheme

Similar to the security model defined in Section 4.3, we for-
mally define the security model for our security-enhanced
scheme ΠE , which consists of a real model and an ideal
model as follows.

Real Model. The real-world execution of our security-
enhanced scheme ΠE happens between {CS1,CS2}, and
A = {A1,A2} is the pair of adversaries controlling the
two servers, respectively. Assume that the inputs of CS1 and
CS2 are respectively x = {K1, [[NodeTable

∗]], [[EdgeTable∗]],
[[req]]} and y = {SK , K2}, and z is the auxiliary input, e.g.,
public parameters. With the inputs x, y, and z, the execution
of ΠE under A in the real model can be defined as

REALΠE ,A,z(x, y)
def
= {OutputΠE (x, y),ViewΠE (x, y), z},

in which pairs OutputΠE (x, y) = {OutputΠE
i (x, y)}2i=1 and

ViewΠE (x, y) = {ViewΠE
i (x, y)}2i=1 are the outputs and

views of {CSi}2i=1, during the execution, respectively.
Ideal Model. in the ideal-world execution, there is a pair

of ideal functionalities F∗ = {F∗1 ,F∗2 } respectively imple-
menting the computation of the two servers, denoted as
f∗1 and f∗2 , and each cloud server CSi interacts with the
corresponding ideal functionality F∗i . Here, the execution of
f∗ = (f∗1 , f

∗
2) under simulators Sim∗ = {Sim∗1, Sim∗2} in the

ideal-world model on input pair (x, y) and auxiliary input
z is defined as

IDEALF∗,Sim∗,z
def
=

{
f∗1 (x, y), Sim∗1(x, f∗1 (x, y)),

f∗2 (x, y), Sim∗2(y, f∗2 (x, y)), z

}
.

Definition 3 (Security of ΠE against semi-honest adver-
sary). Let F∗ be a deterministic functionality and ΠE a pro-
tocol between the two servers. We say that ΠE securely re-
alizes F if there exists Sim∗ of PPT transformations (where
Sim∗ = Sim∗(A)) such that for semi-honest PPT adversaries
A = {A1,A2}, for x, y, and z, for {CS1,CS2} holds:

REALΠE ,A,z(x, y)
c≈ IDEALF∗,Sim∗,z(x, y).

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

10

Theorem 2. The security-enhanced scheme can protect the plain-
text and structure of the original bipartite graph G, the plaintext
and structure of the query requests and results, and the access
pattern against the adversaries A = {A1,A2}.

Proof. We show how to construct the simulators Sim∗ =
{Sim∗1, Sim∗2}. Given {x, f∗1 (x, y), z}, where f∗1 (x, y) =
{|Evis|}, and Evis represents the set of edges that have been
visited, Sim∗1 simulates A1 as follows: i) Sim∗1 first generates
an array {isEmpty}′ of |Evis| zeros followed by a one; ii)
it randomly generates 4 × |Evis| random SHE ciphertexts
to populate four arrays {E(β̂u,α ≥ β)}′, {E(β̂v,α ≥ β)}′,
{E(β̂u,α < β)}′, and {E(β̂v,α < β)}′; iii) it outputs A1’s
view. In addition to x and f∗1 (x, y),A1 receives {{isEmpty},
{E(β̂u,α ≥ β)}, {E(β̂v,α ≥ β)}, {E(β̂u,α < β)}, {E(β̂v,α <

β)}}, while Sim∗1 outputs {{isEmpty}′, {E(β̂u,α ≥ β)}′,
{E(β̂v,α ≥ β)}′, {E(β̂u,α < β)}′, {E(β̂v,α < β)}′}. Based
on the security of the SHE scheme, the views of A1 in the
two executions are indistinguishable. On the other hand,
given x and f∗2 (x, y) = {|Evis|, |Ereq|}, Sim∗2 simulates A2

as follows: i) Sim∗2 builds {isEmpty}′ in the same approach
used by Sim∗1; ii) it randomly generates an array {flag}′
of |Evis| elements, where |Ereq| randomly located elements
are 1s, and the other elements are 0s; iii) it randomly gen-
erates 3|Evis| SHE ciphertexts to populate array {E(x̃)}′ of
length 2|Evis| and {E(ẽi,j)}′ of length |Evis|; iv) it randomly
generates an array {SE(TK′1, r)}′ containing |Evis| random
AES ciphertexts. In addition to y and f∗2 (x, y), A2 receives
{x̃}, {E(ẽi,j)} and {SE(TK1, r)}, while Sim∗2 outputs {x̃}′,
{E(ẽi,j)}′ and {SE(TK1, r)}′, as the corresponding plain-
texts of the received ciphertexts contain random numbers
chosen by CS1, the two views of A2 during the two execu-
tions are indistinguishable.

Thus, the two adversaries can only obtain {x, f∗1 (x, y),
z} and {y, f∗2 (x, y), z}, and based on which, they cannot
derive any useful information related to i) the plaintext and
structure of the original bipartite graph G; ii) the plaintext
and structure of the query requests and results; and iii) the
access pattern during conducting queries.

The above analysis shows that, comparing to our basic
scheme, our security-enhanced one can further protect the
structure of the query requests and results, i.e., |U ∩ R|,
|V ∩ R|, |Ureq|, |Vreq|, and {deg(ni) | ni ∈ Ureq ∪ Vreq}.

6 PERFORMANCE EVALUATION

To evaluate the performance of our proposed schemes, we
first theoretically analyze the computational overhead of
the schemes. After that, we implement both schemes and
evaluate their performance through extensive experiments.

6.1 Theoretical Analysis
In this subsection, we analyze the computational costs of
the basic scheme and the security-enhanced one focusing
on the three algorithms, namely, Graph Outsourcing, Query
Generating, and Query Conducting.

Graph Outsourcing. In the graph outsourcing algo-
rithms in both schemes, the data owner DO constructs the
encrypted index and uploads it to the cloud. Specifically, DO
first builds the linked list Ln,αk

for each n ∈ (U ∪ V) and

αk = 1, · · · , αmax. Based on these linked lists, DO builds
{NodeTable,EdgeTable} and {NodeTable∗,EdgeTable∗} in
the basic scheme and the security-enhanced one, respec-
tively. In the basic scheme, the data owner builds NodeTable
and EdgeTable, where NodeTable contains |U ∪ V| × 2αmax
cells and EdgeTable contains |E| × 2(αmax + 1) cells. To
encrypt these two tables, DO needs to run respectively
|U ∪ V| × αmax × (`e + 1) and |E| × (2`n + 2`eαmax) SHE
encryption operations, where `e = dlog2(|E| + 1)e and
`n = dlog2(|U ∪ V| + 1)e. While in the security-enhanced
scheme, NodeTable∗ and EdgeTable∗ have |U ∪ V| × αmax
and |E|×(2+6×αmax) cells, respectively. Hence, DO needs
to run |U ∪ V| × `e × αmax and |E| × (2`e + (4`e + 2)αmax)
to encrypt these two tables.

Query Generating. In both the basic scheme and the
security-enhanced scheme, an authorized query user runs
the same algorithm to encrypt his/her query request req =
{α, β,R}. Specifically, in this algorithm, the query user
generates (dlog(αmax + 1)e + 1 + |R| · `n) SHE ciphertexts
and 2 ciphertexts of the symmetric-key encryption scheme.

Query Conducting. On receiving a query request from
an authorized user, the two cloud servers jointly conduct the
query and return the query result to the user. Specifically, the
query conducting process in both schemes comprises four
parts, namely, i) preparing for query conduction, which in-
cludes computing {[[NodeTable]][α], [[EdgeTable]][α]} in the
basic scheme or {[[NodeTable∗]][α], [[EdgeTable∗]][α]} in the
security-enhanced scheme; ii) initializing a queue based on
the encrypted query vertices [[R]]; iii) iterating over the two
resulting tables with the queue; and iv) building the query
result. We respectively discuss the computational cost of the
two schemes in each part as follows.
• In the first part, CS1 prepares for query conduction.

Specifically, in the basic scheme, to compute [[NodeTable]][α],
CS1 needs to first conduct roughly α · dlog2(α+ 1)e Homo-
Mul-II operations to compute the flag for each columns
indicating whether the column links to the querying α. After
that, CS1 computes (1+`e)·α·|U∪V| Homo-Mul-I operations
and (1 + `e) · (α − 1) · |U ∪ V| Homo-Add-I operations.
Furthermore, CS1 runs OP3 with CS2 to refresh all cipher-
texts in the resulting [[NodeTable]][α], during which CS1

conducts 2·α(1+`e)|U∪V| Homo-Add-I operations, and CS2

conducts (1 + `e)|U ∪ V| SHE encryptions and decryptions.
For simplicity, hereinafter, we only consider the number of
Homo-Mul-I and Homo-Mul-II operations, SHE encryptions
and decryptions, and we respectively denote their costs
as CMul1, CMul2, CEnc, and CDec. Then, during computing
[[NodeTable]][α], the computational costs for CS1 and CS2 are
respectively αdlog2(α+1)e·CMul2+(1+`e)α|U∪V|·CMul1 and
(1 + `e)|U ∪ V|(CEnc + CDec). On the other hand, by reusing
the flags, the computational costs for CS1 and CS2 to jointly
compute [[EdgeTable]][α] are respectively 2α`e|E| · CMul1 and
2`e|E|(CEnc + CDec). Hence, in the basic scheme, the over-
all computation cost in this part for the two servers is
αdlog2(α + 1)eCMul2 + ((`e + 1)|U ∪ V| + 2`n|E|)(αCMul1 +
CEnc + CDec). Similarly, for the security-enhanced scheme in
this part, the overall computational cost for the two servers
is αdlog2(α+ 1)eCMul2 + (`e|U ∪V|+ (4`e + 2)|E|)(αCMul1 +
CEnc + CDec).
• In the second part, CS1 populates an empty queue

based on the encrypted set of query vertices [[R]]. Specifi-

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

11

cally, in the basic scheme, CS1 retrieves the records of all
[[ptr(ni)]] ∈ [[R]] in NodeTable and enqueues each ni.[[head]]
only if the corresponding E(β̂) ≥ E(β). Therefore, the
computational cost for the basic scheme in this part is
roughly |R|(|U ∪ V|`nCMul2 + (1 + `e)(|U ∪ V|CMul1 + CEnc +
CDec) + |U ∪ V|CMul2 + CEnc + CDec), where for each ni,
the first three terms represent the cost for retrieving the
record from NodeTable and update the visited array, and the
rest terms (CEnc + CDec) represents the cost for comparing
β̂ and β. On the other hand, in the security-enhanced
scheme, CS1 enqueues ui.[[head]] for all [[ptr(ui)]] ∈ [[R]].
Therefore, the overall computational cost for the security-
enhanced scheme in this part is |R| · (|U ∪ V|`nCMul2 +
`e(|U ∪ V|CMul1 + CEnc + CDec) + |E|CMul1), where for each
ui ∈ R, the first two terms represent the cost for retrieving
a record from NodeTable∗, the last term represents the cost
for running OP2 to update the visited array Vn. Note that,
in the security-enhanced scheme, the length of Vn is |E| as
detailed in Section 5.
• In the third part, the two servers jointly iterate

over the two encrypted tables {NodeTable, EdgeTable}, or
{NodeTable∗,EdgeTable∗}. Focusing on each iteration, we
analyze the computational cost of the two proposed schemes
in this part as follows.

In the basic scheme, CS1 dequeues a pointer [[ptr(ei,j)]]
in each iteration. Then, the two servers retrieve the cor-
responding record from [[EdgeTable]][α] and bootstrap the
ciphertexts in the resulting record with a computational cost
of (|E|`eCMul2 + (2`n + 2`e + 2)(|E|CMul1 + CEnc + CDec) +
|E|CMul1). After that, based on the obtained [[ptr(n′)]], the
servers retrieve the record from NodeTable and update the
Vn with a computational cost of (|U ∪ V|`nCMul2 + (`e +
1)(|U ∪ V|CMul1 + CEnc + CDec) + |U ∪ V|CMul1). Further-
more, the servers jointly compare n′.E(β) and E(β̂), and
CS1 checks whether n′ and ei,j have been visited with
a computational cost of CEnc + CDec + (|U ∪ V|`eCMul2 +
|U ∪V|CMul1)+(|E|`nCMul2 + |E|CMul1). Therefore, the overall
computational cost for the basic scheme in each iteration is
(2`n + 3`e + 4)(CEnc +CDec) + ((`e + 3)|U ∪V|+ (2`n + 2`e +
4)|E|)CMul1 + (|U ∪ V|+ |E|)(`e + `n)CMul2.

In the security-enhanced scheme, after dequeuing a
pointer [[ptr(ei,j)]], the servers read the corresponding
record from EdgeTable∗ with a computational cost of
(|E|`eCMul2 + (4`e + 2)(|E|CMul1 + CEnc + CDec) + |E|CMul1).
After that, they jointly compare ui.E(β̂) and vi.E(β̂)
with E(β), and the computational cost is 2(CEnc + CDec).
Then, to compute {E(enablei)}4i=1, the computational cost
for the servers is 4|E|(`eCMul2 + CMul1). Finally, based on
{E(enablei)}4i=1, the servers run four enqueue opera-
tions with a computational cost of 4|[[Q]].arr|(`e + 2)CMul1,
where |[[Q]].arr| represents the length of [[Q]].arr. Therefore,
the overall computational cost for the security-enhanced
scheme in each iteration is (4`e + 4)(CEnc + CDec) + ((4`e +
7)|E|+ 4|[[Q]].arr|(`e + 2))CMul1 + 5|E|`eCMul2.
• In the fourth part, the two servers re-encrypt the

query results. Specifically, in the basic scheme, CS1 packs
the two pointers [[ptr(ui)]], [[ptr(vi)]] for ei,j ∈ Edges, and
then decrypts the resulting ciphertext with CS2. Hence, the
overall computational cost for the basic scheme in this part
is |Edges|((2`n + 1)CMul2 + CDec). On the other hand, for

the security-enhanced scheme, the two servers only need to
decrypt one ciphertext for each edge in |Edges|, i.e., their
computational cost is |Edges|CDec.

6.2 Experimental Results
In this section, we evaluate the performance of our pro-
posed schemes. Specifically, we implement our basic scheme
and security-enhanced scheme in Rust, and evaluate the
implementation on an platform equipped with an Intel(R)
Xeon(R) Gold 6140 CPU @2.30GHz, 64GB RAM and running
Ubuntu 21.04 LTS operating system. We adopt two bipartite
graph datasets, namely, Wikiquote Edits (da)1 and NIPS
full papers2, respectively denoted as GWIKI and GNIPS. To
demonstrate the performance of our schemes on datasets
of different sizes, we randomly generate five datasets by
randomly sampling 5000, 7500, 10000, 12500, 15000 edges
from GWIKI and GNIPS, respectively, denoted by {G(1)

WIKI, G
(2)
WIKI,

G(3)
WIKI, G

(4)
WIKI, G

(5)
WIKI}, and {G(1)

NIPS, G(2)
NIPS, G(3)

NIPS, G(4)
NIPS, G(5)

NIPS}.
In the table, we denote the maximum numbers of neighbors
for a vertex in U and V as αmax and βmax, respectively.
Recalling that α and β are respectively the constraints on
number of neighbors for vertices in U and V , we can swap
U and V such that αmax ≤ βmax to reduce the number
of columns in the index. Furthermore, to demonstrate the
distribution of each vertex’s degree in U and V for each
dataset, we compute an array containing the degrees of all
vertices for each dataset and plot the sorted arrays in Fig. 6.

TABLE 1
Details of the Four Datasets

U V |U| |V| |E| αmax βmax

G(1)
WIKI Page User 4694 200 5000 11 2884

G(2)
WIKI Page User 6819 237 7500 12 4271

G(3)
WIKI Page User 8886 276 10000 18 5684

G(4)
WIKI Page User 10809 300 12500 20 7144

G(5)
WIKI Page User 12750 329 15000 26 8664

G(1)
NIPS Document Word 1414 2657 5000 13 13

G(2)
NIPS Document Word 1472 3403 7500 18 20

G(3)
NIPS Document Word 1491 4040 10000 22 25

G(4)
NIPS Document Word 1490 4474 12500 23 30

G(5)
NIPS Document Word 1490 4880 15000 23 35

Graph Outsourcing. As analyzed in Section 6.1, the
computational cost for the data owner to outsource the
graph is linear to the number of nodes |U ∪ V| and the
number of edges |E|, which is also demonstrated in Fig. 7.
Furthermore, as αmax is larger for G(i)

NIPS datasets, the time
consumption for DO to encrypt the edge tables is slightly
higher than that for the G(i)

WIKI datasets.
Query Generating. As shown in Fig. 8, the time con-

sumption for an authorized user to encrypt a query request
increases with the number of query vertices |R|. Further-
more, comparing with G

(i)
NIPS datasets, G(i)

WIKI datasets have
more vertices and larger αmax, so it takes more time for the
user to encrypt a query request.

1. http://konect.cc/networks/edit-dawikisource/
2. http://konect.cc/networks/bag-nips/

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

12

0 2000 4000 6000 8000 10000 12000
Page

100

101

De
gr

ee
Dataset (1)

WIKI

Dataset (2)
WIKI

Dataset (3)
WIKI

Dataset (4)
WIKI

Dataset (5)
WIKI

(a) Degree of each U in G(i)WIKI’s

0 50 100 150 200 250 300
User

100

101

102

103

104

De
gr

ee

Dataset (1)
WIKI

Dataset (2)
WIKI

Dataset (3)
WIKI

Dataset (4)
WIKI

Dataset (5)
WIKI

(b) Degree of each V in G(i)WIKI’s

0 250 500 750 1000 1250 1500
Document

100

101

De
gr

ee

(1)
NIPS
(2)
NIPS
(3)
NIPS
(4)
NIPS
(5)
NIPS

(c) Degree of each U in G(i)NIPS’s

0 1000 2000 3000 4000 5000
Word

100

101

De
gr

ee

(1)
NIPS
(2)
NIPS
(3)
NIPS
(4)
NIPS
(5)
NIPS

(d) Degree of each V in G(i)NIPS’s

Fig. 6. The distributions of the sorted degrees for vertices in U and V in
both datasets. Specifically, we compute the degree of each vertex in U
and V of G(i)WIKI’s and G(i)NIPS’s, and plot the sorted degrees in the figures.

4000 6000 8000 10000 12000
Number of Nodes | |

1

2

3

4

Ti
m

e
(s

)

(i)
WIKI, Basic
(i)
WIKI, Extended
(i)
NIPS, Basic
(i)
NIPS, Extended

(a) Encrypting node tables

6000 8000 10000 12000 14000
Number of Edges | |

5

10

15

20

Ti
m

e
(s

)

(i)
WIKI, Basic
(i)
WIKI, Extended
(i)
NIPS, Basic
(i)
NIPS, Extended

(b) Encrypting edge tables

Fig. 7. The average time consumption for DO to encrypt {NodeTable,
EdgeTable} or {NodeTable∗,EdgeTable∗} in the two proposed scheme
for the datasets G(i)WIKI and G(i)NIPS.

Query Conducting. In Fig. 9, we plot the overall time
consumption for the two servers to handle (α, β)-core
queries. Specifically, since the time consumption signifi-
cantly affected by the chosen query vertices ui ∈ R, α,
and β, in the figures, we show the relationship between
average time consumption for a query and the number
of iteration of the query, i.e., the number of edges been
visited during conducting the query. As shown in the
figures, the time consumption linearly increases with the
number of iterations. Furthermore, as shown in the figures,
it takes similar time for the security-enhanced scheme to
query on G(i)

WIKI datasets and G(i)
NIPS datasets, while the time

2 4 6 8
Number of Vertices | |

40

60

80

100

120

140

Ti
m

e
(

s)

Dataset (1)
WIKI

Dataset (3)
WIKI

Dataset (5)
WIKI

(a) For G(i)WIKI datasets

2 4 6 8
Number of Vertices | |

40

60

80

100

120

Ti
m

e
(

s)

Dataset (1)
NIPS

Dataset (3)
NIPS

Dataset (5)
NIPS

(b) For G(i)NIPS datasets

Fig. 8. The average time consumption for an authorized user to encrypt
a query request containing different numbers of vertices |R|.

consumption for the basic scheme to process a query on
G(i)
WIKI is higher than that for a query on G(i)

NIPS. The dif-
ferences are introduced mainly at when retrieving a row
from [[NodeTable]][α], [[NodeTable∗]][α], [[EdgeTable]][α] and
[[EdgeTable∗]][α], as shown in Fig. 11. Specifically, in the third
part of the security-enhanced scheme, it will only traverse
the edge table [[EdgeTable∗]] and the two types of datasets
have the same number of edges. However, in the third part
of the basic scheme, the two servers will read both the edge
table EdgeTable and the node table NodeTable, and the G(i)

WIKI

datasets contain more vertices than the G(i)
NIPS ones.

10 15 20 25 30 35 40
Number of Iterations

0

1000

2000

3000

4000

Ti
m

e
(s

)

(1)
WIKI, Basic
(3)
WIKI, Basic
(5)
WIKI, Basic

(1)
WIKI, Enhanced
(3)
WIKI, Enhanced
(5)
WIKI, Enhanced

(a) For G(i)WIKI datasets

10 15 20 25 30 35 40
Number of Iterations

0

1000

2000

3000

4000

Ti
m

e
(s

)

(1)
NIPS, Basic
(3)
NIPS, Basic
(5)
NIPS, Basic

(1)
NIPS, Enhanced
(3)
NIPS, Enhanced
(5)
NIPS, Enhanced

(b) For G(i)NIPS datasets

Fig. 9. The average time consumption for conducting a query with
different numbers of iterations.

To elaborate further on our schemes’ performance
in the query conducting phase, we specifically evaluate
the time consumption for i) computing {[[NodeTable]][α],
[[EdgeTable]][α]} or {[[NodeTable∗]][α], [[EdgeTable∗]][α]}; ii)
retrieving a record from {[[NodeTable]][α], [[EdgeTable]][α]}
or {[[NodeTable∗]][α], [[EdgeTable∗]][α]}; and iii) enqueuing
an element into [[Q]] as follows.
• As shown in Fig. 10, on the same dataset, the time

consumption for retrieving [[NodeTable]][α] is higher than
that for [[NodeTable∗]][α], while retrieving [[EdgeTable∗]][α]
consumes more time than retrieving [[EdgeTable]][α].
This is mainly because that, although NodeTable and
[[NodeTable∗]][α] has the same number of rows, NodeTable
contains more columns than NodeTable∗, while EdgeTable∗

has more columns than EdgeTable, as shown in Table 1.

4000 6000 8000 10000 12000
Number of Nodes | |

20

40

60

80

100

120

140

Ti
m

es
 (s

)

(i)
NIPS, Basic
(i)
NIPS, Enhanced
(i)
WIKI, Basic
(i)
WIKI, Enhanced

(a) For node tables

6000 8000 10000 12000 14000
Number of Edges | |

100

200

300

400

500

600

Ti
m

es
 (s

)

(i)
NIPS, Basic
(i)
NIPS, Enhanced
(i)
WIKI, Basic
(i)
WIKI, Enhanced

(b) For edge tables

Fig. 10. The average time consumption for computing {[[NodeTable]][α],
[[EdgeTable]][α]} or {[[NodeTable∗]][α], [[EdgeTable∗]][α]}.

• As shown in Fig. 11, we plot the average time
consumption for retrieving a record from [[NodeTable]][α],
[[NodeTable∗]][α], [[EdgeTable]][α] and [[EdgeTable∗]][α]. As
shown in the figure, the average time consumption for re-
trieving a record from the tables increases with the number
of records in the tables.
• To demonstrate the efficiency of the encrypted queue

[[Q]], we plot Fig. 12 to show the time consumption for
enqueuing an element into a queue [[Q]] with different

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

13

4000 6000 8000 10000 12000
Number of Nodes | |

4

6

8

10

12

14

16

Ti
m

e
(s

)
(i)
NIPS, Basic
(i)
NIPS, Enhanced
(i)
WIKI, Basic
(i)
WIKI, Enhanced

(a) Reading node tables

6000 8000 10000 12000 14000
Number of Edges | |

20

30

40

50

60

Ti
m

e
(s

)

(i)
NIPS, Basic
(i)
NIPS, Enhanced
(i)
WIKI, Basic
(i)
WIKI, Enhanced

(b) Reading edge tables

Fig. 11. The average time consumption for retrieving a row from
[[NodeTable]][α], [[NodeTable∗]][α], [[EdgeTable]][α] and [[EdgeTable∗]][α]
versus different sizes of tables.

lengths of [[Q]].arr. As shown in the figure, the time con-
sumption increases with the length of [[Q]].arr, and when
|[[Q]].arr| = 150, enqueuing a pointer represented as an
array of dlog2(15000 + 1)e = 6 SHE ciphertexts takes 25 ms.

As for the query user, on receiving the query result from
the servers, he/she only needs to run several decryptions
of the underlying SE scheme, which is usually negligible.
Hence, the overall computational cost for the query user
to launch a query to the proposed schemes lies in the
query generation phase, and it is analyzed to be efficient in
Section 6.1. Therefore, the overall computational cost for the
query user to launch an (α, β)-core query to the proposed
schemes is efficient.

7 RELATED WORK

In this section, we review some related works, which are
closely related to our proposed scheme in terms of privacy-
preserving graph query.

To preserve data privacy while querying over a graph,
many schemes [10]–[17] based on k-anonymity have been
proposed. On the one hand, some of them aim to preserve
the privacy of vertices. Hay et al. [10] presented a pertur-
bation technique to perform a sequence of random edge
deletions and edge insertions, such that there will be at least
k candidate vertices being matched by any structural query
over the resulting graph. Liu et al. [14] proposed a solution
to ensure that, for any vertex in the graph, there exist at least
k−1 vertices having the same degree with it while minimiz-
ing the number of edge modifications. Focusing on neigh-
borhood attacks, Zhou et al. [12] proposed a social network
anonymization solution based on adding edges, such that
with the anonymized graph, aggregated network queries
(e.g., average distance) can be answered with satisfactory
accuracy. Different from Zhou et al.’s work, Liu et al. [16]
proposed a scheme to anonymize weighted social networks
to resist the weighted 1*-neighborhood attack. On the other
hand, some schemes were proposed to protect the privacy
of edges. To prevent link re-identification, Zheleva et al. [11]
proposed a scheme based on edge clustering and removal.
Ying et al. [13] proposed an algorithm to anonymize a
graph to prevent adversaries from checking the existance of
certain links. In [15], the authors considered ε-differential
privacy for edges and proposed a graph anonymization
solution that can preserve the structural information for
specific data analysis tasks, such as degree distribution, cut
query and shortest path length. Chang et al. [17] proposed
a framework to conduct subgraph matching, where the

0 20 40 60 80 100 120 140
Length of [[Q]]. arr

0

5

10

15

20

25

Ti
m

e
(m

s)

Dataset (i)
NIPS

Dataset (i)
WIKI

Fig. 12. The average time consumption for enqueuing an element into
[[Q]] with different lengths of [[Q]].arr.

structural and label privacy are preserved by employing the
k-automorphism model. However, the neighbors of a vertex
in a graph may vary after being anonymized by these k-
anonymity–based schemes, the accuracy of the (α, β)-core
query might be significantly degraded. Hence, they cannot
be applied to our scenario.

There are also many schemes [18]–[28] built upon ho-
momorphic encryption schemes or multi-party computing.
Some of the schemes [18]–[22] focus on traditional graph
problems, such as shortest distance problem, minimum
spanning tree, and maximum flow problem. Aly et al.
[18] proposed a scheme to solve problems such as the
shortest distance problem, through multi-party computa-
tion. Blanton et al. [19] built algorithms based on ORAM to
obliviously implement fundamental graph algorithms, e.g.,
breadth-first search and single-source single-destination
shortest path. As these two schemes represent a graph by
its adjacency matrix, they cannot efficiently handle large
sparse matrices. Meng et al. [20] proposed schemes to pro-
cess approximate shortest distance queries with symmetric-
key encryption and somewhat homomorphic encryption. To
handle accurate shortest path computation, Wu et al. [21]
built a scheme by employing private information retrieval
(PIR) and garbled circuits. Based on additive homomorphic
encryption scheme and garbled circuits, Wang et al. [22]
built their scheme to conduct accurate shortest distance
queries, and their scheme can support graph updates. Some
of the schemes [23], [24], [26] were proposed to handle
subgraph queries. Cao et al. [23] proposed a scheme to
handle subgraph queries with a filtering-and-verification
manner by converting filtration into inner products. In [24],
Fan et al. considered to support subgraph query processing,
where the data graph is publicly known and the query
structure/topology is kept secret. Xu et al. [26] built their
scheme upon a somewhat homomorphic encryption scheme
to process strong simulation queries over a plaintext large
graph, while preserving the privacy of queries. Meanwhile,
some works [27], [28] have been proposed to support mes-
sage passing algorithms, which can support many tradi-
tional graph queries; however, deploying message passing
algorithms to achieve (α, β)-core queries is still challenging.
However, these schemes are tailored for specific types of
queries, and cannot efficiently support (α, β)-core queries.

8 CONCLUSION

In this paper, we have presented an efficient and privacy-
preserving (α, β)-core query scheme for bipartite graphs in

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

14

the cloud. Specifically, we first designed an index containing
two tables built from the bipartite graph, where each row
in the two tables respectively represents a vertex and an
edge in the bipartite graph. Then, we built our basic scheme
where the index and query requests are encrypted by the
SHE scheme. Furthermore, we built a security-enhanced
scheme by revising the index structure and designing an
encrypted queue. The security analysis shows that the basic
scheme can protect the plaintext and structure of the dataset
and the plaintext of the query requests and results, and
achieve access pattern privacy, while the security-enhanced
scheme can further preserve the structure privacy of the
query requests and results. After that, we demonstrated the
performance of our proposed schemes through extensive ex-
periments, and the result shows that our proposed schemes
are indeed computationally efficient. In our future work, we
will further evaluate our schemes in real-world scenarios.

ACKNOWLEDGMENTS

This research was supported in part by NSERC Discovery
Grants (04009), ZJNSF LZ18F020003, NSFC U1709217.

REFERENCES

[1] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, “Neighborhood
formation and anomaly detection in bipartite graphs,” in Proceed-
ings of the 5th IEEE International Conference on Data Mining (ICDM
2005), 27-30 November 2005, Houston, Texas, USA. IEEE Computer
Society, 2005, pp. 418–425.

[2] Z. Liu, L. Cui, W. Guo, W. He, H. Li, and J. Gao, “Predicting
hospital readmission using graph representation learning based
on patient and disease bipartite graph,” in DASFAA. Springer,
2020, pp. 385–397.

[3] N. Benchettara, R. Kanawati, and C. Rouveirol, “Supervised ma-
chine learning applied to link prediction in bipartite social net-
works,” in International Conference on Advances in Social Networks
Analysis and Mining, ASONAM 2010, Odense, Denmark, August 9-
11, 2010. IEEE Computer Society, 2010, pp. 326–330.

[4] D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient fault-
tolerant group recommendation using alpha-beta-core,” in Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge
Management, CIKM 2017, Singapore, November 06 - 10, 2017. ACM,
2017, pp. 2047–2050.

[5] K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang,
“Efficient and effective community search on large-scale bipartite
graphs,” in 37th IEEE International Conference on Data Engineering,
ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 2021, pp. 85–96.

[6] T. Wu, Y. Wang, Y. Wang, E. Zhao, and Y. Yuan, “Leveraging
graph-based hierarchical medical entity embedding for healthcare
applications,” Scientific reports, vol. 11, no. 1, pp. 1–13, 2021.

[7] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Achieving efficient
and privacy-preserving exact set similarity search over encrypted
data,” IEEE Trans. Dependable Secur. Comput., 2020.

[8] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and
privacy-preserving similarity range query over encrypted time
series data,” IEEE Trans. Dependable Secur. Comput., pp. 1–1, 2021.

[9] S. Zhang, S. Ray, R. Lu, Y. Zheng, and J. Shao, “Preserving location
privacy for outsourced most-frequent item query in mobile crowd-
sensing,” IEEE Internet Things J., vol. 8, no. 11, pp. 9139–9150, 2021.

[10] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava,
“Anonymizing social networks,” Computer science department fac-
ulty publication series, p. 180, 2007.

[11] E. Zheleva and L. Getoor, “Preserving the privacy of sensitive
relationships in graph data,” in International workshop on privacy,
security, and trust in KDD. Springer, 2007, pp. 153–171.

[12] B. Zhou and J. Pei, “Preserving privacy in social networks against
neighborhood attacks,” in 24th ICDE. IEEE Computer Society,
2008, pp. 506–515.

[13] X. Ying and X. Wu, “Randomizing social networks: a spectrum
preserving approach,” in SDM 2008. SIAM, 2008, pp. 739–750.

[14] K. Liu and E. Terzi, “Towards identity anonymization on graphs,”
in SIGMOD 2008. ACM, 2008, pp. 93–106.

[15] R. Chen, B. C. M. Fung, P. S. Yu, and B. C. Desai, “Correlated
network data publication via differential privacy,” VLDB J., vol. 23,
no. 4, pp. 653–676, 2014.

[16] Q. Liu, G. Wang, F. Li, S. Yang, and J. Wu, “Preserving privacy with
probabilistic indistinguishability in weighted social networks,”
IEEE Trans. Parallel Distributed Syst., vol. 28, no. 5, pp. 1417–1429,
2017.

[17] Z. Chang, L. Zou, and F. Li, “Privacy preserving subgraph match-
ing on large graphs in cloud,” in SIGMOD 2016. ACM, 2016, pp.
199–213.

[18] A. Aly, E. Cuvelier, S. Mawet, O. Pereira, and M. V. Vyve, “Securely
solving simple combinatorial graph problems,” in 17th FC, vol.
7859. Springer, 2013, pp. 239–257.

[19] M. Blanton, A. Steele, and M. Aliasgari, “Data-oblivious graph
algorithms for secure computation and outsourcing,” in 8th ASIA
CCS. ACM, 2013, pp. 207–218.

[20] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “GRECS: graph en-
cryption for approximate shortest distance queries,” in Proceedings
of the 22nd ACM CCS, 2015. ACM, 2015, pp. 504–517.

[21] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell, “Privacy-
preserving shortest path computation,” in 23rd NDSS. The
Internet Society, 2016.

[22] Q. Wang, K. Ren, M. Du, Q. Li, and A. Mohaisen, “Secgdb:
Graph encryption for exact shortest distance queries with efficient
updates,” in 21st FC, vol. 10322. Springer, 2017, pp. 79–97.

[23] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou, “Privacy-
preserving query over encrypted graph-structured data in cloud
computing,” in ICDCS 2011. IEEE Computer Society, 2011, pp.
393–402.

[24] Z. Fan, B. Choi, J. Xu, and S. S. Bhowmick, “Asymmetric structure-
preserving subgraph queries for large graphs,” in 31st ICDE. IEEE
Computer Society, 2015, pp. 339–350.

[25] Z. Fan, B. Choi, Q. Chen, J. Xu, H. Hu, and S. S. Bhowmick,
“Structure-preserving subgraph query services,” in 32nd ICDE.
IEEE Computer Society, 2016, pp. 1532–1533.

[26] L. Xu, J. Jiang, B. Choi, J. Xu, and S. S. Bhowmick, “Privacy
preserving strong simulation queries on large graphs,” in 37th
ICDE. IEEE, 2021, pp. 61–72.

[27] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and
E. Shi, “Graphsc: Parallel secure computation made easy,” in 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. IEEE Computer Society, 2015, pp. 377–394.

[28] T. Araki, J. Furukawa, K. Ohara, B. Pinkas, H. Rosemarin, and
H. Tsuchida, “Secure graph analysis at scale,” in CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, Republic of Korea, November 15 - 19, 2021. ACM,
2021, pp. 610–629.

[29] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani,
“Achieving O(log3n) communication-efficient privacy-preserving
range query in fog-based iot,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5220–5232, 2020.

[30] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft,
and D. Boneh, “Privacy-preserving matrix factorization,” in 2013
ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013. ACM, 2013, pp. 801–
812.

[31] Y. Zheng, H. Duan, and C. Wang, “Learning the truth privately
and confidently: Encrypted confidence-aware truth discovery in
mobile crowdsensing,” IEEE Trans. Inf. Forensics Secur., vol. 13,
no. 10, pp. 2475–2489, 2018.

[32] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. Deng, “Privacy-
preserving federated deep learning with irregular users,” IEEE
Trans. Dependable Secur. Comput., pp. 1–1, 2020.

[33] H. Yu, X. Jia, H. Zhang, X. Yu, and J. Shu, “Psride: Privacy-
preserving shared ride matching for online ride hailing systems,”
IEEE Trans. Dependable Secur. Comput., vol. 18, no. 3, pp. 1425–1440,
2021.

[34] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “To-
ward privacy-preserving cybertwin-based spatio-temporal key-
word query for its in 6g era,” IEEE Internet Things J., pp. 1–1,
2021.

[35] O. Goldreich, The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2009.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3169386, IEEE
Transactions on Dependable and Secure Computing

15

Yunguo Guan is a PhD student of the Fac-
ulty of Computer Science, University of New
Brunswick, Canada. His research interests in-
clude applied cryptography and game theory.

Rongxing Lu (S’09-M’11-SM’15-F’21) is a Uni-
versity Research Scholar, an associate profes-
sor at the Faculty of Computer Science (FCS),
University of New Brunswick (UNB), Canada.
Before that, he worked as an assistant profes-
sor at the School of Electrical and Electronic
Engineering, Nanyang Technological University
(NTU), Singapore from April 2013 to August
2016. Rongxing Lu worked as a Postdoctoral
Fellow at the University of Waterloo from May
2012 to April 2013. He was awarded the most

prestigious “Governor General’s Gold Medal”, when he received his
PhD degree from the Department of Electrical & Computer Engineering,
University of Waterloo, Canada, in 2012; and won the 8th IEEE Com-
munications Society (ComSoc) Asia Pacific (AP) Outstanding Young Re-
searcher Award, in 2013. Dr. Lu is an IEEE Fellow. His research interests
include applied cryptography, privacy enhancing technologies, and IoT-
Big Data security and privacy. He has published extensively in his areas
of expertise (with H-index 76 from Google Scholar as of Feb. 2022), and
was the recipient of 9 best (student) paper awards from some reputable
journals and conferences. Currently, Dr. Lu serves as the Chair of IEEE
ComSoc CIS-TC (Communications and Information Security Technical
Committee), and the founding Co-chair of IEEE TEMS Blockchain and
Distributed Ledgers Technologies Technical Committee (BDLT-TC). Dr.
Lu is the Winner of 2016-17 Excellence in Teaching Award, FCS, UNB.

Yandong Zheng received her M.S. degree from
the Department of Computer Science, Beihang
University, China, in 2017 and she is currently
pursuing her Ph.D. degree in the Faculty of Com-
puter Science, University of New Brunswick,
Canada. Her research interest includes cloud
computing security, big data privacy and applied
privacy.

Songnian Zhang received his M.S. degree from
Xidian University, China, in 2016 and he is cur-
rently pursuing his Ph.D. degree in the Fac-
ulty of Computer Science, University of New
Brunswick, Canada. His research interest in-
cludes cloud computing security, big data query
and query privacy.

Jun Shao received the Ph.D. degree from the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, Shanghai,
China, in 2008.

He was a Post-Doctoral Fellow with the
School of Information Sciences and Technology,
Pennsylvania State University, Pennsylvania, PA,
USA, from 2008 to 2010. He is currently a Pro-
fessor with the School of Computer and Infor-
mation Engineering, Zhejiang Gongshang Uni-
versity, Hangzhou, China. His current research

interests include network security and applied cryptography.

Guiyi Wei is a professor of the School of Com-
puter and Information Engineering at Zhejiang
Gongshang University. He obtained his Ph.D. in
Dec 2006 from Zhejiang University, where he
was advised by Cheung Kong chair professor
Yao Zheng. His research interests include wire-
less networks, mobile computing, cloud comput-
ing, social networks and network security.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:40:58 UTC from IEEE Xplore. Restrictions apply.

